The Difference TruPave® Engineered Paving Mat Makes:

- Millable and recyclable: TruPave® will breakdown under milling operations due to the unique use of fiberglass and polyester fibers; it is perfect for use in recycled asphalt paving mixes for sustainability and reducing the carbon footprint of producing virgin asphalt mixes and conventional pavement removal techniques.
- Improves fatigue resistance in flexible pavements: Laboratory testing proves that TruPave's® high tensile strength improves flexural pavement performance under loading.
- Pavements exhibit multi-directional cracking and provide a stress relief interlayer against reflective and fatigue crack development in new hot mix overlays due to the TruPave’s® unique nonwoven fiber matrix construction, tensile strengths and translated to the pavement a 360° radial manner.
- Helps to reduce the long-term maintenance and rehabilitation costs associated with pavements.
- Withstands the higher temperatures of today's hot mix asphalt paving mixes.

OUR APPLICATIONS
TruPave® is specifically designed to be used in hot mix overlay applications over existing asphalt and/or concrete pavement, or in new construction between the asphalt layers. It is recommended to follow Owens Corning’s Installation Guidelines.

- Highways
- Urban Streets
- Airports
- Bridge Decks
- Parking Lots
- Shopping Centers

OUR PROCESS
TruPave® Engineered Paving Mat is manufactured using a wet-formed process, comprised of fiberglass and polyester fibers blended in an aqueous latex resin. This unique manufacturing process ensures that the fibers uniformly disperse and form a strong interlocking mat that will deliver tensile strength in all directions.

TruPave® is available in the following sizes:
- 12'6" x 360' (500 sy)
- 10'- 0" x 360' (400 sy)
- 6'- 3" x 360' (250 sy)

OUR SERVICE
TenCate™ offers complete application technical assistance. Our comprehensive service includes assistance during design, specification and throughout the process. TenCate™ makes the difference.
Technical Data
(All values are minimum average roll values)

<table>
<thead>
<tr>
<th>Mechanical Properties</th>
<th>Test Method</th>
<th>Unit</th>
<th>Roll Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nominal</td>
<td>Max.</td>
</tr>
<tr>
<td>Tensile Strength (MD)</td>
<td>ASTM D 5035</td>
<td>lb/2 in</td>
<td>80</td>
</tr>
<tr>
<td>Tensile Strength (CD)</td>
<td>ASTM D 5035</td>
<td>lb/2 in</td>
<td>70</td>
</tr>
<tr>
<td>Tensile Strength (bias angle)²</td>
<td>ASTM D 5035³</td>
<td>lb/2 in</td>
<td>70</td>
</tr>
<tr>
<td>Elongation @ max load</td>
<td>ASTM D 5035</td>
<td>%</td>
<td><5</td>
</tr>
<tr>
<td>Melting Point</td>
<td>ASTM D 276</td>
<td>F° (C°)</td>
<td>> 446 (> 230)</td>
</tr>
<tr>
<td>Mass/Unit Area</td>
<td>ASTM D 5261</td>
<td>oz/yd² (g/m²)</td>
<td>4.1 (136.6)</td>
</tr>
</tbody>
</table>

¹ Minimum MD and CD tensile per ASTM D 7239, Type I material specification (200N/50mm)
² In paving applications, bias angle tensile strength can be a factor in mitigating multi-directional crack propagation
³ Modified test sample is cut on a 45⁰ angle and tested according to ASTM D 5035