A study evaluating the cost-effectiveness of using paving fabrics in roadway maintenance projects is getting a new look.

The original work was a comprehensive study of pavement repair materials and methods. It examined maintenance treatments on 370 roads in Greenville County, S.C., in the 1997-98 maintenance year.

Released in 2005, The Study of Pavement Maintenance Techniques Used on Greenville County Maintained Roads, was undertaken, compiled, and later presented by C. Joel Sprague, senior engineer for Texas Research Institute (TRI/Environmental Inc.).

This exhaustive study compared the cost-effectiveness and performance of four road-maintenance treatments:

1. In-place, cold mill recycling and an overlay
2. Patching, followed by paving fabric and an overlay
3. Paving fabric and an overlay
4. Overlay only

What made this study particularly compelling was its groundbreaking use of a road-condition rating system as a performance monitoring tool. The ratings were used as part of a pavement management system to evaluate the effectiveness of the four defined maintenance strategies.

The road condition rating allowed the study to take into account the condition of the pavement at the time that the maintenance work is done. Common sense suggests that different treatments fare best under different conditions, and this study confirmed that supposition.

“Previous studies have shown that nonwoven paving fabrics extend the life of asphalt overlays up to 10 years,” explained John Miner, paving products market manager at Mirafi Construction Products, Ten-Cate Geosynthetics. “This analysis of pavement condition indexes lets us quantify the benefits of paving fabrics [as compared to] four specific pavement strategies. This is extremely helpful to pavement maintenance engineers around the country as they develop the most cost-effective solutions to repair their roadway systems,” Miner said.

The paving assessment was not the only new element. The study was also the first to draw broad-ranging conclusions about the economic benefits of paving fabric interlayers.

In the past, some transportation departments and local contractors have chosen not to use paving fabrics, viewing them as an unnecessary and extra cost. However, this study demonstrated that incorporating a paving fabric interlayer is always a cost-competitive repair strategy. On a road in a typical “needs repair” condition, the paving fabric repair strategy clearly gives the most bang for the construction buck.

A suitable location

Greenville County S.C. was an ideal place for a study of this breadth because it has more than a decade of records that document its road maintenance techniques. The county maintains about 1,600 centerline miles of road. More mileage is being added every year because of the area’s population and economic growth.

The improvements included in the study were part of a program called “Prescription for Progress (PFP), Paving County Roads,” which Greenville County initiated in 1997.

In 2002, Greenville County’s Department of Public Works (GCDPW) called for a periodic evaluation of its current road improvement methods. It contacted Sprague about the possibility of performing an independent study. GCDPW offered its records and information for the project. The only problem was that at the time, there was no budget allocated for it. Because the county has often used paving fabric as part of its road improvement techniques, Sprague approached the Geosynthetic Materials Association (GMA) for funding.

GMA agreed to fund the study. However, because there was some uncertainty about the quality and quantity of data available, GMA suggested splitting the project and the funding into two phases.
Phase 1: Can it be done?

The first part of the project was specifically intended as a test—to get an idea of whether the available data would support a more complete study of pavement maintenance techniques used in Greenville County. Phase 1 included data from only 34 roads.

The results from Phase 1 suggested that the effectiveness of various road repair treatments is related to the pavement’s condition at the time it is treated.

Sprague used a 100-point scale called the pavement condition index (PCI) to rate the surface conditions on the 34 roads before they were repaired. Then he used two measures of performance to rate the success of the maintenance. One measure, the depreciation cost, represented the amount of the maintenance treatment that was “used up” between the repair (in 1997 or 1998) and the assessment of the pavement condition in 2003. The other measure, the degradation ratio, compared the rate of degradation after the maintenance to the rate at which the road had been degrading before treatment.

This preliminary phase of the project suggested that:
- For roads with a PCI rating of 30 or less, in-place cold mill recycling with an overlay does the best job of slowing the degradation rate.
- For roads with a PCI in approximately the 35 to 65 range, a paving fabric interlayer with a minimum 1.5-in. overlay was the most cost-effective maintenance strategy.
- For roads with a PCI above 70, a simple asphalt overlay and a fabric/overlay system are about equal in performance and cost-effectiveness.

With these results in hand, Sprague then set out to validate his findings with a larger data set.

Onward to Phase 2

Phase 2, the main body of the study, expanded on the work done in the preliminary phase. This time, Sprague included data on all 370 Greenville County roads repaired during the first year of PFP (“Prescription for Progress”).

The research in Phase 2 included five steps:
1. Compile a list of roads rehabilitated and/or resurfaced in the first year of PFP (1997-1998). Note the cost of the repairs.
2. For all of these roads, find the last known record of the pavement condition index (PCI) prior to any subsequent treatment. Take note of the date it was assessed.
3. From this information, estimate the PCI rating of the road at the time it was repaired.
4. Calculate the cost-effectiveness of the treatment by measuring the amount of degradation between the time it was repaired and a 2003 road evaluation.
5. Identify trends in the data.

Sprague gathered information for the study from several sources. To find pre-maintenance PCI values for the...
Sprague then referred to the 1997-1998 PFP database to find out what treatments had been done on the roads and how much the treatments had cost. Finally, he used a database of 2003 road condition ratings to determine how well the roads held up after treatment.

The most challenging part of the project was making a quantitative assessment of the pavement’s condition at the time it was repaired. The only data available were the 1994-1996 ratings the county had originally used to select roads for repair as part of the PFP program. Nothing had been done to the roads in the meantime. And in some cases, nearly four years had elapsed between the time the road was assessed and the time it was maintained.

Fortunately, in 1991 the county engineering office had developed characteristic pavement degradation curves for an earlier research project. Sprague interpolated these curves to determine the pavement conditions at the time of treatment.

When the averaged curve was applied to the 370 roads in the study, the calculation indicated a large number of roads with a PCI of zero—not too surprising, considering that the intent of Prescription for Progress was to deal with the worst roads first. Any road that qualified for PFP was bound to have reached a PCI of less than 50.

This time around, Sprague decided to use only depreciation cost as a measure of the treatment’s success. He dropped the degradation ratio because it was difficult to determine exactly how quickly the roads had been degrading before their 1997-1998 treatments.

However, the depreciation cost for each road was a matter of simple calculation. The following equation produced a depreciation cost in dollars per square yard per year:

\[
\text{Depreciation cost} = \text{Unit cost of material X} \times \left(\frac{(100 – \text{last rating})}{100}\right) / (\text{last rating date} – \text{maintenance date})
\]

All 370 roads were maintained using one of the four methods described at the beginning of this article: (1) cold mill recycling and an overlay, (2) patching followed by paving fabric and an overlay, (3) paving fabric and an overlay, or (4) an overlay only. In some cases, different sections of the same road received different treatments. In those situations, the roads were divided into subsections for the purposes of the study.

Upon completion, the team at TRI ended up with a large set of data that correlated pre-treatment condition, treatment type, current condition, and depreciation cost. Sprague plotted the data points and fitted a third-order polynomial trendline to them. He chose that type of trendline because it provided the best match to the findings from Phase 1.

Pavement treatments

<table>
<thead>
<tr>
<th>Installation of the paving fabric over the tack coat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>With the tack coat already sprayed on, the paving fabric is now placed over this substantially cracked surface.</td>
</tr>
</tbody>
</table>

Here is what Phase 2 revealed:

- For roads with a PCI rating of 25 or less, in-place cold mill recycling and an overlay is comparable to a patching/fabric/overlay combination in cost-effectiveness. On road surfaces in very bad condition, both of these strategies are a better value for the money than either fabric/overlay or overlay only.
- For roads with a PCI between 25 and 50, paving fabric with a minimum 1.5-in. overlay is most cost-effective and appears to do the best job of slowing down degradation.
- For roads with a PCI above 50, a simple asphalt overlay is about equal to a fabric/overlay system in performance and cost-effectiveness. (When the paving fabric interlayer and overlay is as cost-effective as the same thickness overlay with no fabric, it’s because the life extension of the pavement is equal to the extra cost up front.) However, more study is needed because only a handful of the roads included in the study had a condition of 50 or better when they were repaired.

There was quite a bit of scatter in the data, but the scatter was easily explained. For one thing, the decision of which maintenance treatment to use on each road was left up to the contractor in charge and wasn’t made according to any fixed system. And despite a countywide standard stating that overlays should be 2.25 to 2.5 in. thick, the overlay thicknesses were often as thin as 1.9 in.

Also, despite the use of the characteristic pavement degradation curves, there was still some uncertainty about the exact condition of the roads at the time they were repaired.

In a perfect world, investigators would be able to assess pavement condition immediately before repairing it. Then they would assign treatment according to...
PCI ratings and would ascertain that consistent methods were used.

But the fact that this study presents such a clear result in an imperfect world adds even more credibility to the author’s conclusions. It’s also notable that although many of the roads had similarly low pre-treatment ratings, contractors chose a paving fabric interlayer to repair them. Obviously, the roads where fabric treatment was used were in the worst condition beforehand—a condition where a simple overlay would not last long.

Why is a paving fabric interlayer so cost-effective? One reason is the low cost of the installed system. A square yard of paving fabric, installed with the required asphalt cement tack coat, ready to be paved over, typically costs less than half of what milled-in-place asphalt concrete would cost per square yard.

Conclusions

This study was the most comprehensive of its kind, to date. It compares paving fabric interlayers with conventional asphalt overlays and in-place pavement recycling on a large number of roads in relatively poor condition.

Many counties, municipalities, and DOTs have a policy similar to Greenville County’s “worst-first” strategy.

“While previous studies have shown that nonwoven paving fabrics extend the life of asphalt overlays of up to 10 years, none have quantified that the maximum benefit is achieved within a specific pavement condition type,” said Deron Austin, P.E., and the former marketing director at SI Geosolutions in Chattanooga, Tenn. “This is extremely helpful to pavement maintenance engineers around the country as they develop the most cost-effective solutions to repair their roadway systems.”

Indeed, these conclusions will be highly useful to maintenance professionals as they plan their road repair strategies. The study presented clear evidence of what many have known all along: Paving fabric is a smart economic choice.

The full study may be found on the Geosynthetic Materials Association’s Web site, www.gmanow.com. It is, simply put, a guide to making better road maintenance decisions.

Acknowledgements

This study was sponsored by Propex Fabrics, TC Mirafi, and SI Geosolutions as a special project under the auspices of the Geosynthetic Materials Association (GMA).